Matemáticas Rosario Acuña

DEPARTAMENTO de MATEMÁTICAS del IES ROSARIO de ACUÑA. GIJÓN

El Desafío Matemático 29/30

Vigésimo noveno problema matemático (29/30) planteado por El Pais.com.

Javier Fresán, estudiante de doctorado en Matemáticas en la Université Paris 13 Nord, presenta el vigésimo noveno desafío con el que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española.

Vigésimo noveno problema

Desafíos matemáticos con Geogebra

Simulaciones realizadas por Manuel Sada 

Enunciado por escrito.-

Se quiere elegir a un representante entre varios candidatos. Muchos dirían que las matemáticas que intervienen en el proceso se reducen a contar el número de votos. Y, sin embargo, en cuanto se examina la situación con un poco de detalle, se ve que surgen fenómenos extraños.

Imaginemos que, en unas elecciones a las que se presentan siete candidatos, uno de ellos recibe el 40% de los votos, y que el 60% restante se reparte de igual manera entre los otros seis. Sin pensarlo dos veces declaramos ganador por mayoría simple al primer candidato. Ahora bien, si pidiéramos a los votantes que dijeran no solo cuál es su candidato preferido, sino también quién es el que menos les gusta, podría darse la circunstancia de que todos aquellos que no han votado al candidato ganador lo colocasen en último lugar. Y entonces se habría declarado ganador a un candidato que es… ¡el que menos gusta por mayoría absoluta!

Este fenómeno se conoce como paradoja de Borda, en honor al matemático e ingeniero francés Jean-Charles de Borda, que vivió en el siglo XVIII. Precisamente con la intención de que el resultado de las elecciones se ajustase mejor a los gustos de los votantes, Borda introdujo un nuevo método de recuento en el que cada elector coloca a todos los candidatos en orden de preferencia. Por cada votante, si el candidato está en la última posición recibe un punto; si está en la penúltima, dos; en la tercera por el final, tres; y así sucesivamente. A continuación se suman todos los puntos y se declara ganador al que más tiene.

Por ejemplo, en una elección en la que cuatro personas eligen entre tres candidatos A, B y C ordenados del siguiente modo:

Votante 1: A>B>C

Votante 2: C>B>A

Votante 3: B>C>A

Votante 4: A>B>C

Así, el candidato A recibe 3+1+1+3=8 puntos, B recibe 2+2+3+2=9 y C recibe 1+3+2+1=7, luego se declara ganador a B. Ahora bien, el método de Borda da un ganador que podría ser distinto del ganador por mayoría. De hecho, si solo hubiésemos tenido en cuenta el candidato preferido, el ganador habría sido A, que tiene 2 votos, en lugar de 1 como B y C.

Y el desafío de la semana es el siguiente: supongamos que n candidatos se presentan a unas elecciones, ¿qué porcentaje de apoyos tiene que recibir como mínimo un ganador por mayoría para que podamos asegurar que también sería el ganador si el recuento de los votos se hubiera realizado según el método de Borda?

Estadísticas Este artículo ha sido visitado  665  veces

Deja una Respuesta

Debes estar identificado para dejar un comentario. Identifícate »

Matemáticas Rosario Acuña. Alojado en Educastur Blog.
RSS | RSS de los comentarios
Powered by WordPress. Serpentine Theme by Educastur. Uses portions of code from Kubrick and Mandigo themes.